{"@context": "https://schema.org/", "@type": "Quiz", "about": {"@type": "Thing", "name": "Geometrical Progression" }, "educationalAlignment": [{"@type": "AlignmentObject","alignmentType": "educationalSubject","targetName": "Mathematics"}], "hasPart": [{"@context": "https://schema.org/","@type": "Question","eduQuestionType": "Flashcard", "text": "Find n ∈ N.If lim_x->0(1-cosx cos2x cos3x .... cosnx) = 253 - ReadAxis", "acceptedAnswer": {"@type": "Answer", "text": "Since given expression →00 , We can use L’Hopitallimx→00–[(−sinx)(cos2x⋅cos3xcos4x….cosnx)+(−2sin2x)(cosx⋅cos3xcos4x….cosnx)+(−3sin3x)(cosx⋅cos2xcos4x…cosnx)…..(−nsinnx)(cosx⋅cos2x⋅cos3x….cos(n−1))]2xlimx→0(sinx)(cos2x⋅cos3xcos4x….cosnx)+(2sin2x)(cosx⋅cos3xcos4x….cosnx)+(3sin3x)(cosx⋅cos2xcos4x…cosnx)…..(nsinnx)(cosx⋅cos2x⋅cos3x….cos(n−1))2x12limx→0(sinx)(cos2x⋅cos3xcos4x….cosnx)+(2sin2x)(cosx⋅cos3xcos4x….cosnx)+(3sin3x)(cosx⋅cos2xcos4x…cosnx)…..(nsinnx)(cosx⋅cos2x⋅cos3x….cos(n−1))x12limx→0(sinx)(cos2x⋅cos3xcos4x….cosnx)x+2⋅(2sin2x)(cosx⋅cos3xcos4x….cosnx)2x+3⋅(3sin3x)(cosx⋅cos2xcos4x…cosnx)3x…..n⋅(nsinnx)(cosx⋅cos2x⋅cos3x….cos(n−1))nx12limx→0(sinx)(cos2x⋅cos3xcos4x….cosnx)x+22(sin2x)(cosx⋅cos3xcos4x….cosnx)2x+32(sin3x)(cosx⋅cos2xcos4x…cosnx)3x…..n2(sinnx)(cosx⋅cos2x⋅cos3x….cos(n−1))nxwe know limt→0cost→0andlimt→0sintt→1Therefore 12[1+22+32+….+n2]=12⋅n(n+1)(2n+1)6From question 12⋅n(n+1)(2n+1)6=253⇒n(n+1)(2n+1)=12⋅ 11⋅23Hence n=11" }}]} {"@context": "http://schema.org","@type": "QAPage", "name": "Find n ∈ N.If lim_x->0(1-cosx cos2x cos3x .... cosnx) = 253 - ReadAxis", "description": "Since given expression →00 , We can use L’Hopitallimx→00–[(−sinx)(cos2x⋅cos3xcos4x….cosnx)+(−2sin2x)(cosx⋅cos3xcos4x….cosnx)+(−3sin3x)(cosx⋅cos2xcos4x…cosnx)…..(−nsinnx)(cosx⋅cos2x⋅cos3x….cos(n−1))]2xlimx→0(sinx)(cos2x⋅cos3xcos4x….cosnx)+(2sin2x)(cosx⋅cos3xcos4x….cosnx)+(3sin3x)(cosx⋅cos2xcos4x…cosnx)…..(nsinnx)(cosx⋅cos2x⋅cos3x….cos(n−1))2x12limx→0(sinx)(cos2x⋅cos3xcos4x….cosnx)+(2sin2x)(cosx⋅cos3xcos4x….cosnx)+(3sin3x)(cosx⋅cos2xcos4x…cosnx)…..(nsinnx)(cosx⋅cos2x⋅cos3x….cos(n−1))x12limx→0(sinx", "mainEntity": {"@type": "Question", "@id": "https://readaxis.com/question-answer/find-n-%e2%88%88-n-if-lim_x-01-cosx-cos2x-cos3x-cosnx-253/", "name": "Find n ∈ N.If lim_x->0(1-cosx cos2x cos3x .... cosnx) = 253 - ReadAxis", "text": "Find n ∈ N.If lim_x->0(1-cosx cos2x cos3x .... cosnx) = 253 - ReadAxis", "dateCreated": "2023-01-20T10:04:51.929Z", "answerCount": "1", "author": { "@type": "Person", "name": "ReadAxis", "url": "https://www.readaxis.com/" }, "acceptedAnswer": { "@type": "Answer", "upvoteCount": "9", "text": "Since given expression →00 , We can use L’Hopitallimx→00–[(−sinx)(cos2x⋅cos3xcos4x….cosnx)+(−2sin2x)(cosx⋅cos3xcos4x….cosnx)+(−3sin3x)(cosx⋅cos2xcos4x…cosnx)…..(−nsinnx)(cosx⋅cos2x⋅cos3x….cos(n−1))]2xlimx→0(sinx)(cos2x⋅cos3xcos4x….cosnx)+(2sin2x)(cosx⋅cos3xcos4x….cosnx)+(3sin3x)(cosx⋅cos2xcos4x…cosnx)…..(nsinnx)(cosx⋅cos2x⋅cos3x….cos(n−1))2x12limx→0(sinx)(cos2x⋅cos3xcos4x….cosnx)+(2sin2x)(cosx⋅cos3xcos4x….cosnx)+(3sin3x)(cosx⋅cos2xcos4x…cosnx)…..(nsinnx)(cosx⋅cos2x⋅cos3x….cos(n−1))x12limx→0(sinx)(cos2x⋅cos3xcos4x….cosnx)x+2⋅(2sin2x)(cosx⋅cos3xcos4x….cosnx)2x+3⋅(3sin3x)(cosx⋅cos2xcos4x…cosnx)3x…..n⋅(nsinnx)(cosx⋅cos2x⋅cos3x….cos(n−1))nx12limx→0(sinx)(cos2x⋅cos3xcos4x….cosnx)x+22(sin2x)(cosx⋅cos3xcos4x….cosnx)2x+32(sin3x)(cosx⋅cos2xcos4x…cosnx)3x…..n2(sinnx)(cosx⋅cos2x⋅cos3x….cos(n−1))nxwe know limt→0cost→0andlimt→0sintt→1Therefore 12[1+22+32+….+n2]=12⋅n(n+1)(2n+1)6From question 12⋅n(n+1)(2n+1)6=253⇒n(n+1)(2n+1)=12⋅ 11⋅23Hence n=11", "url": "https://readaxis.com/question-answer/find-n-%e2%88%88-n-if-lim_x-01-cosx-cos2x-cos3x-cosnx-253/", "dateCreated": "2023-01-20T10:04:51.929Z", "author": { "@type": "Person", "name": "Readaxis Admin" } }, "suggestedAnswer": [] } }

Question

Find \(n \in N\). If \(\lim_{x \to 0}(1 – \cos x \cdot \cos 2x \cdot \cos 3x …. \cos nx) = 253\)

Solution:

Since given expression \(\to \frac{0}{0}\) , We can use L’Hopital

\(\lim_{x \to 0} \frac{0 – [(-\sin x)(\cos 2x\cdot \cos 3x \cos 4x …. \cos nx) + (-2\sin 2x)(\cos x\cdot \cos 3x \cos 4x …. \cos nx) + (-3\sin 3x)(\cos x \cdot \cos 2x \cos 4x … \cos nx) ….. (-n \sin nx)(\cos x \cdot \cos 2x \cdot \cos 3x …. \cos (n-1))]}{2x}\)

\(\lim_{x \to 0} \frac{(\sin x)(\cos 2x\cdot \cos 3x \cos 4x …. \cos nx) + (2\sin 2x)(\cos x\cdot \cos 3x \cos 4x …. \cos nx) + (3\sin 3x)(\cos x \cdot \cos 2x \cos 4x … \cos nx) ….. (n \sin nx)(\cos x \cdot \cos 2x \cdot \cos 3x …. \cos (n-1))}{2x}\)

\(\frac{1}{2} \lim_{x \to 0} \frac{(\sin x)(\cos 2x\cdot \cos 3x \cos 4x …. \cos nx) + (2\sin 2x)(\cos x\cdot \cos 3x \cos 4x …. \cos nx) + (3\sin 3x)(\cos x \cdot \cos 2x \cos 4x … \cos nx) ….. (n \sin nx)(\cos x \cdot \cos 2x \cdot \cos 3x …. \cos (n-1))}{x}\)

\(\frac{1}{2} \lim_{x \to 0} \frac{(\sin x)(\cos 2x\cdot \cos 3x \cos 4x …. \cos nx)}{x} + \frac{2\cdot (2\sin 2x)(\cos x\cdot \cos 3x \cos 4x …. \cos nx)}{2x} + \frac{3\cdot (3\sin 3x)(\cos x \cdot \cos 2x \cos 4x … \cos nx)}{3x} ….. \frac{n\cdot (n \sin nx)(\cos x \cdot \cos 2x \cdot \cos 3x …. \cos (n-1))}{nx}\)

\(\frac{1}{2} \lim_{x \to 0} \frac{(\sin x)(\cos 2x\cdot \cos 3x \cos 4x …. \cos nx)}{x} + \frac{2^2 (\sin 2x)(\cos x\cdot \cos 3x \cos 4x …. \cos nx)}{2x} + \frac{3^2(\sin 3x)(\cos x \cdot \cos 2x \cos 4x … \cos nx)}{3x} ….. \frac{n^2( \sin nx)(\cos x \cdot \cos 2x \cdot \cos 3x …. \cos (n-1))}{nx}\)

we know \(\lim_{t \to 0}\cos t \to 0 \; and \; \lim_{t \to 0} \frac{\sin t}{t} \to 1\)

Therefore \( \frac{1}{2}[1 + 2^2 + 3^2 + …. + n^2]\)
\( = \frac{1}{2} \cdot \frac{n(n+1)(2n+1)}{6}\)

From question \(\frac{1}{2} \cdot \frac{n(n+1)(2n+1)}{6} = 253\)
\(\Rightarrow n(n+1)(2n+1) = 12 \cdot \ 11 \cdot 23\)

Hence \(n = 11\)

Class: Subject: