{ "@context": "https://schema.org/", "@type": "Quiz", "about": { "@type": "Thing", "name": "Polynomial" }, "educationalAlignment": [ { "@type": "AlignmentObject", "alignmentType": "educationalSubject", "targetName": "Mathematics" } ], "hasPart": [ { "@context": "https://schema.org/", "@type": "Question", "eduQuestionType": "Flashcard", "text": "If x+y+z=12 and x^2+y^2+z^2=96 and {1}/{x}+{1}/{y}+{1}/{z}=36. Find the value of {x^3+y^3+z^3}/{4}.", "acceptedAnswer": { "@type": "Answer", "text": "we know , (a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ac) then, (x + y + z)^2 = 144 = 96 + 2(xy + yz +xz) => 24 = xy + yz + xz. Given , {1}/{x} + {1}/{y} + {1}/{z} = 36 = {xy + yz + xy}/{xyz} => 24 = 36xyz => xyz = {2}{3}. => 3xyz = 2. we know a^3 + b^3 + c^3 - 3abc = (a + b + c) (a^2 + b^2 + c^2 - ab - bc - ac) then, x^3 + y^3 + z^3 - 2 = 12 * (96 - 24) => { x^3 + y^3 + z^3}/{4} = 216.5" } } ] } { "@context": "http://schema.org", "@type": "QAPage", "name": "If x+y+z=12 , x^2+y^2+z^2=96 and {1}/{x}+{1}/{y}+{1}/{z}=36. Find the value of {x^3+y^3+z^3}/{4}.", "description": "we know , (a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ac) then, (x + y + z)^2 = 144 = 96 + 2(xy + yz +xz) => 24 = xy + yz + xz.... ", "mainEntity": { "@type": "Question", "@id": "https://readaxis.com/question-answer/if-xyz12-x2y2z296-and-1-x1-y1-z36-find-the-value-of-x3y3z3-4/", "name": "If x+y+z=12 , x^2+y^2+z^2=96 and {1}/{x}+{1}/{y}+{1}/{z}=36. Find the value of {x^3+y^3+z^3}/{4}.", "text": "If x+y+z=12 , x^2+y^2+z^2=96 and {1}/{x}+{1}/{y}+{1}/{z}=36. Find the value of {x^3+y^3+z^3}/{4}.", "dateCreated": "2023-01-19T11:52Z", "answerCount": "1", "author": { "@type": "Person", "name": "ReadAxis", "url": "https://www.readaxis.com/" }, "acceptedAnswer": { "@type": "Answer", "upvoteCount": "2", "text": "we know , (a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ac) then, (x + y + z)^2 = 144 = 96 + 2(xy + yz +xz) => 24 = xy + yz + xz. Given , {1}/{x} + {1}/{y} + {1}/{z} = 36 = {xy + yz + xy}/{xyz} => 24 = 36xyz => xyz = {2}{3}. => 3xyz = 2. we know a^3 + b^3 + c^3 - 3abc = (a + b + c) (a^2 + b^2 + c^2 - ab - bc - ac) then, x^3 + y^3 + z^3 - 2 = 12 * (96 - 24) => { x^3 + y^3 + z^3}/{4} = 216.5", "url": "https://readaxis.com/question-answer/if-xyz12-x2y2z296-and-1-x1-y1-z36-find-the-value-of-x3y3z3-4/", "dateCreated": "2023-01-19T11:52Z", "author": { "@type": "Person", "name": "Readaxis Admin" } }, "suggestedAnswer": [] } }

Question

\(x + y + z = 12 \) , \(x^2 + y^2 + z^2 = 96 \) and \( \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 36\). Find the value of \( \frac{x^3 + y^3 + z^3}{4} \).

Solution:

we know , \((a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ac)\)
then, \((x + y + z)^2 = 144 = 96 + 2(xy + yz +xz)\)
\(\Rightarrow 24 = xy + yz + xz\)

Given , \( \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 36 = \frac{xy + yz + xy}{xyz} \)
\(\Rightarrow 24 = 36xyz\)
\(\Rightarrow xyz = \frac{2}{3} \).
\(\Rightarrow 3xyz = 2\)

we know \(a^3 + b^3 + c^3 – 3abc = (a + b + c) (a^2 + b^2 + c^2 – ab – bc – ac)\)
then, \(x^3 + y^3 + z^3 – 2 = 12 \times (96 – 24)\)
\( \Rightarrow \frac{ x^3 + y^3 + z^3}{4} = 216.5 \)