Question
Evaluate \((0.7 + 0.77 + 0.777 + … + \:upto\; n \;times)\)
Solution:
\( 7 (0.1 + 0.11 + 0.111 + …. + \)upto n times)
\(= \frac{7}{9}(0.9 + 0.99 + 0.999 + … + \)upto n times)
\( = \frac{7}{9}(\frac{9}{10} + \frac{99}{100} + \frac{999}{1000} + … +\) upto n times)
\( = \frac{7}{9}(1-\frac{1}{10} + 1-\frac{1}{100} + 1-\frac{1}{1000} + … +\) upto n times)
\( = \frac{7}{9}(1-\frac{1}{10^1} + 1-\frac{1}{10^2} + 1-\frac{1}{10^3} + … + \)upto n times)
\( = \frac{7}{9}[n -(\frac{1}{10^1} + \frac{1}{10^2} + \frac{1}{10^3} + … + \)upto n times)]
By Sum of GP having \( a= \frac{1}{10}\: and\: r = \frac{1}{10}\)
\(= \frac{7}{9}[n\; – \frac{\frac{1}{10} \times ((\frac{1}{10})^n – 1)}{\frac{1}{10} – 1}]\)
\(= \frac{7}{9}[n \;- \frac{\frac{1}{10} \times ((\frac{1}{10^n}) – 1)}{\frac{-9}{10}}]\)
\(= \frac{7}{9}[n \;+(\frac{1}{9} \times (\frac{1}{10^n} – 1))\)