{"@context": "https://schema.org/", "@type": "Quiz", "about": {"@type": "Thing", "name": "Geometrical Progression" }, "educationalAlignment": [{"@type": "AlignmentObject","alignmentType": "educationalSubject","targetName": "Mathematics"}], "hasPart": [{"@context": "https://schema.org/","@type": "Question","eduQuestionType": "Flashcard", "text": "ΔABC with all acute angles is given. The point whose coordinates are (cosB-sinA sinB-cosA) can be in which quadrant - ReadAxis", "acceptedAnswer": {"@type": "Answer", "text": "∠A+∠B+∠C=π⇒∠A+∠B=π–∠CAnd from question ∠A+∠B>π2⇒∠A>π2–∠BTaking cos on both sidescos(π2–B)>cosA⇒sinB–cosA>0Now taking sin on both sidessinA>sin(π2–B)⇒sinA>cosB⇒cosB–sinA<0Therefore Point(cosB−sinA,sinB−cosA) lies in 2nd quadrant." }}]} {"@context": "http://schema.org","@type": "QAPage", "name": "ΔABC with all acute angles is given. The point whose coordinates are (cosB-sinA sinB-cosA) can be in which quadrant - ReadAxis", "description": "∠A+∠B+∠C=π⇒∠A+∠B=π–∠CAnd from question ∠A+∠B>π2⇒∠A>π2–∠BTaking cos on both sidescos(π2–B)>cosA⇒sinB–cosA>0Now taking sin on both sidessinA>sin(π2–B)⇒sinA>cosB⇒cosB–sinAπ2⇒∠A>π2–∠BTaking cos on both sidescos(π2–B)>cosA⇒sinB–cosA>0Now taking sin on both sidessinA>sin(π2–B)⇒sinA>cosB⇒cosB–sinA<0Therefore Point(cosB−sinA,sinB−cosA) lies in 2nd quadrant.", "url": "https://readaxis.com/question-answer/abc-with-all-acute-angles-is-given-the-point-whose-coordinates-are-cosb-sina-sinb-cosa-can-be-in-which-quadrant/", "dateCreated": "2023-01-20T08:23:13.607Z", "author": { "@type": "Person", "name": "Readaxis Admin" } }, "suggestedAnswer": [] } }

Question

ΔABC with all acute angles is given. The point whose coordinates are (\(\cos B\;-\;\sin A, \sin B\;-\;\cos A\)) can be in which quadrant.

Solution:

\( \angle A\;+\;\angle B\;+\;\angle C = \pi\)
\(\Rightarrow \angle A\;+\;\angle B = \pi\; – \;\angle C\)

And from question \(\angle A\; + \; \angle B > \frac{\pi}{2}\)
\(\Rightarrow \angle A > \frac{\pi}{2} – \angle B \)

Taking \(\cos\) on both sides
\(\cos (\frac{\pi}{2} – B) > \cos A\)
\(\Rightarrow \sin B – \cos A > 0\)

Now taking \(\sin\) on both sides
\(\sin A > \sin(\frac{\pi}{2} – B)\)
\(\Rightarrow \sin A > \cos B\)
\(\Rightarrow \cos B – \sin A < 0\)

Therefore Point(\(\cos B\;-\;\sin A, \sin B\;-\;\cos A\)) lies in 2nd quadrant.