{"@context": "https://schema.org/", "@type": "Quiz", "about": {"@type": "Thing", "name": "Geometrical Progression" }, "educationalAlignment": [{"@type": "AlignmentObject","alignmentType": "educationalSubject","targetName": "Mathematics"}], "hasPart": [{"@context": "https://schema.org/","@type": "Question","eduQuestionType": "Flashcard", "text": "Evaluate for dy/dx y=ln(x+sqroot(1+x^2)) - ReadAxis", "acceptedAnswer": {"@type": "Answer", "text": "Using chain rules,dydx=1x+1+x2√[(1)+(1211+x2√⋅{(0)+(2x)})]⇒dydx=1x+1+x2√[1+x2√+x1+x2√]⇒dydx=11+x2√" }}]} {"@context": "http://schema.org","@type": "QAPage", "name": "Evaluate for dy/dx y=ln(x+sqroot(1+x^2)) - ReadAxis", "description": "Using chain rules,dydx=1x+1+x2√[(1)+(1211+x2√⋅{(0)+(2x)})]⇒dydx=1x+1+x2√[1+x2√+x1+x2√]⇒dydx=11+x2√", "mainEntity": {"@type": "Question", "@id": "https://readaxis.com/question-answer/evaluate-for-dy-dx-ylnxsqroot1x2/", "name": "Evaluate for dy/dx y=ln(x+sqroot(1+x^2)) - ReadAxis", "text": "Evaluate for dy/dx y=ln(x+sqroot(1+x^2)) - ReadAxis", "dateCreated": "2023-01-20T08:49:58.348Z", "answerCount": "1", "author": { "@type": "Person", "name": "ReadAxis", "url": "https://www.readaxis.com/" }, "acceptedAnswer": { "@type": "Answer", "upvoteCount": "5", "text": "Using chain rules,dydx=1x+1+x2√[(1)+(1211+x2√⋅{(0)+(2x)})]⇒dydx=1x+1+x2√[1+x2√+x1+x2√]⇒dydx=11+x2√", "url": "https://readaxis.com/question-answer/evaluate-for-dy-dx-ylnxsqroot1x2/", "dateCreated": "2023-01-20T08:49:58.348Z", "author": { "@type": "Person", "name": "Readaxis Admin" } }, "suggestedAnswer": [] } }

Question

Evaluate for \(\frac{dy}{dx} \,,\, y = \ln(x + \sqrt{1 + x^2 })\)

Solution:

Using chain rules,

\(\frac{dy}{dx} = \frac{1}{x + \sqrt{1 + x^2}}[(1) +( \frac{1}{2} \frac{1}{\sqrt{1 + x^2}} \cdot \{(0) + (2x)\})]\)

\(\Rightarrow \frac{dy}{dx} = \frac{1}{x + \sqrt{1 + x^2}}[\frac{\sqrt{1 + x^2} + x}{\sqrt{1 + x^2}}]\)

\(\Rightarrow \frac{dy}{dx} = \frac{1}{\sqrt{1 + x^2}}\)