{"@context": "https://schema.org/", "@type": "Quiz", "about": {"@type": "Thing", "name": "Geometrical Progression" }, "educationalAlignment": [{"@type": "AlignmentObject","alignmentType": "educationalSubject","targetName": "Mathematics"}], "hasPart": [{"@context": "https://schema.org/","@type": "Question","eduQuestionType": "Flashcard", "text": "Evaluate {1}/{1*2*3*4}+{1}/{2*3*4*5}+{1}/{3*4*5*6}+...+up to n terms. - ReadAxis", "acceptedAnswer": {"@type": "Answer", "text": "General term Tr=1r(r+1)(r+2)(r+3)=13×r+3–rr(r+1)(r+2)(r+3)=13[1r(r+1)(r+2)–1(r+1)(r+2)(r+3)]Now T1=13[11⋅2⋅3–12⋅3⋅4]T2=13[12⋅3⋅4–13⋅4⋅5]T3=13[13⋅4⋅5–14⋅5⋅6]⋅⋅⋅Tn−1=13[1(n−1)⋅(n)⋅(n+1)–1n⋅(n+1)⋅(n+2)]Tn=13[1n⋅(n+1)⋅(n+2)–1(n+1)⋅(n+2)⋅(n+3)]T1+T2+T3+…+Tn−1+Tn=∑nn=1TrAdding them terms will cancel out each others and only first and last terms remain.∑nn=1Tr=13[11⋅2⋅3–1(n+1)⋅(n+2)⋅(n+3)]" }}]} {"@context": "http://schema.org","@type": "QAPage", "name": "Evaluate {1}/{1*2*3*4}+{1}/{2*3*4*5}+{1}/{3*4*5*6}+...+up to n terms. - ReadAxis", "description": "General term Tr=1r(r+1)(r+2)(r+3)=13×r+3–rr(r+1)(r+2)(r+3)=13[1r(r+1)(r+2)–1(r+1)(r+2)(r+3)]Now T1=13[11⋅2⋅3–12⋅3⋅4]T2=13[12⋅3⋅4–13⋅4⋅5]T3=13[13⋅4⋅5–14⋅5⋅6]⋅⋅⋅Tn−1=13[1(n−1)⋅(n)⋅(n+1)–1n⋅(n+1)⋅(n+2)]Tn=13[1n⋅(n+1)⋅(n+2)–1(n+1)⋅(n+2)⋅(n+3)]T1+T2+T3+…+Tn−1+Tn=∑nn=1TrAdding them terms will cancel out each others and only first and last terms remain.∑nn=1Tr=13[11⋅2⋅3–1(n+1)⋅(n+2)⋅(n+3)]", "mainEntity": {"@type": "Question", "@id": "https://readaxis.com/question-answer/evaluate-1-12341-23451-3456-up-to-n-terms/", "name": "Evaluate {1}/{1*2*3*4}+{1}/{2*3*4*5}+{1}/{3*4*5*6}+...+up to n terms. - ReadAxis", "text": "Evaluate {1}/{1*2*3*4}+{1}/{2*3*4*5}+{1}/{3*4*5*6}+...+up to n terms. - ReadAxis", "dateCreated": "2023-01-20T07:05:20.303Z", "answerCount": "1", "author": { "@type": "Person", "name": "ReadAxis", "url": "https://www.readaxis.com/" }, "acceptedAnswer": { "@type": "Answer", "upvoteCount": "0", "text": "General term Tr=1r(r+1)(r+2)(r+3)=13×r+3–rr(r+1)(r+2)(r+3)=13[1r(r+1)(r+2)–1(r+1)(r+2)(r+3)]Now T1=13[11⋅2⋅3–12⋅3⋅4]T2=13[12⋅3⋅4–13⋅4⋅5]T3=13[13⋅4⋅5–14⋅5⋅6]⋅⋅⋅Tn−1=13[1(n−1)⋅(n)⋅(n+1)–1n⋅(n+1)⋅(n+2)]Tn=13[1n⋅(n+1)⋅(n+2)–1(n+1)⋅(n+2)⋅(n+3)]T1+T2+T3+…+Tn−1+Tn=∑nn=1TrAdding them terms will cancel out each others and only first and last terms remain.∑nn=1Tr=13[11⋅2⋅3–1(n+1)⋅(n+2)⋅(n+3)]", "url": "https://readaxis.com/question-answer/evaluate-1-12341-23451-3456-up-to-n-terms/", "dateCreated": "2023-01-20T07:05:20.303Z", "author": { "@type": "Person", "name": "Readaxis Admin" } }, "suggestedAnswer": [] } }

Question

Evaluate \(\frac{1}{1 \cdot 2 \cdot 3 \cdot 4} + \frac{1}{2 \cdot 3 \cdot 4 \cdot 5} + \frac{1}{3 \cdot 4 \cdot 5 \cdot 6} + … + \)up to n terms.

Solution:

General term \( T_r = \frac{1}{r(r+1)(r+2)(r+3)} \)

\( = \frac{1}{3} \times \frac{r + 3 – r}{r(r+1)(r+2)(r+3)}\)
\( = \frac{1}{3} [\frac{1}{r(r+1)(r+2)} – \frac{1}{(r+1)(r+2)(r+3)} ]\)

Now \(T_1 = \frac{1}{3} [\frac{1}{1 \cdot 2 \cdot 3} – \frac{1}{2 \cdot 3 \cdot 4}]\)
\(T_2 = \frac{1}{3} [\frac{1}{2 \cdot 3 \cdot 4} – \frac{1}{3 \cdot 4 \cdot 5}]\)
\(T_3 = \frac{1}{3} [\frac{1}{3 \cdot 4 \cdot 5} – \frac{1}{4 \cdot 5 \cdot 6}]\)
\(\cdot\)
\(\cdot\)
\(\cdot\)
\(T_{n-1} = \frac{1}{3} [\frac{1}{(n-1) \cdot (n) \cdot (n+1)} – \frac{1}{n \cdot (n+1) \cdot (n+2)}]\)
\(T_n = \frac{1}{3} [\frac{1}{n \cdot (n+1) \cdot (n+2)} – \frac{1}{(n+1) \cdot (n+2) \cdot (n+3)}]\)

\(T_1 + T_2 + T_3 + … + T_{n-1} + T_n = \sum_{n=1}^{n}T_r\)

Adding them terms will cancel out each others and only first and last terms remain.

\( \sum_{n=1}^{n}T_r = \frac{1}{3}[\frac{1}{1 \cdot 2 \cdot 3} – \frac{1}{(n+1) \cdot (n+2) \cdot (n+3)}] \)