Chapter-13

Probability

The salient features of the chapter are -

- The conditional probability of an event E , given the occurrence of the event F is given by

$$
\begin{aligned}
& P(E \mid F)=\frac{\mathrm{P}(\mathrm{E} \cap \mathrm{~F})}{\mathrm{P}(\mathrm{~F})}, \mathrm{P}(\mathrm{~F}) \neq 0 \\
& \\
& 0 \leq P(E \mid F) \leq 1, \\
& \\
& P\left(E^{\prime} \mid F\right)=1-P(E \mid F) \\
& P((E \cup F) \mid G)=P(E \mid G)+P(F \mid G)-P((E \cap F) \mid G) \\
& \quad \\
& P(E \cap)=(\mathrm{E}) \quad(\mid), \quad(\mathrm{E}) \neq 0 \\
& \\
& P(E \cap F)=P(F) P(E \mid F), P(F) \neq 0 \\
& \\
& \\
& P(E \cap F)=P(E) P(F) \\
& \quad(\mid)=(), \quad(\quad \neq 0 \\
& P(F \mid E)=P(F), P(E) \neq 0
\end{aligned}
$$

- Theorem of total probability:

Let $\left\{E_{1}, E_{2}, \ldots, E_{\mathrm{n}}\right)$ be a partition of a sample space and suppose that each of $E_{1}, E_{2}, \ldots, E_{\mathrm{n}}$ has non zero probability. Let A be any event associated with S, then

$$
\mathrm{P}(\mathrm{~A})=\mathrm{P}\left(\mathrm{E}_{1}\right) \mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{1}\right)+\mathrm{P}\left(\mathrm{E}_{2}\right)+\mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{2}\right)+\ldots \ldots . . \mathrm{P}\left(\mathrm{E}_{\mathrm{n}}\right) \mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{\mathrm{n}}\right)
$$

- Bayes' theorem: If $E_{1}, E_{2}, \ldots, E_{\mathrm{n}}$ are events which constitute a partition of sample space S, i.e. $E_{1}, E_{2}, \ldots, E_{\mathrm{n}}$ are pairwise disjoint and $E_{1} 4, E_{2} 4, \ldots, 4 E_{\mathrm{n}}=S$ and A be any event with non-zero probability, then, $P\left(E_{\mathrm{i}} \mid A\right)=\frac{P\left(E_{\mathrm{i}} \quad \mathrm{i}\right.}{\sum_{\mathrm{j} 1}^{\mathrm{n}} P\left(E_{\mathrm{i}}\right) \mathrm{P}\left(\mathrm{A} \mid \mathrm{E}_{\mathrm{i}}\right)}$
- A random variable is a real valued function whose domain is the sample space of a random experiment.
- The probability distribution of a random variable X is the system of numbers

$$
\begin{gathered}
1 \\
1
\end{gathered}
$$

- Let X be a random variable whose possible values $x_{1}, x_{2}, x_{3} \ldots \ldots, x_{\mathrm{n}}$ occur with probabilities $\mathrm{p}_{1,} \mathrm{p}_{2}, p_{3} \ldots \ldots, p_{\mathrm{n}}$ respectively. The mean of X , denoted by μ is the number $\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}} \mathrm{p}_{\mathrm{i}}$. The mean of a random variable X is also called the expectation of X, denoted by $E(X)$.
- Let X be a random variable whose possible values $x_{1}, x_{2}, x_{3} \ldots \ldots, x_{\mathrm{n}}$ occur with probabilities $\mathrm{p}\left(\mathrm{x}_{1}\right), \mathrm{p}\left(\mathrm{x}_{2}\right), \ldots \mathrm{p}\left(\mathrm{x}_{\mathrm{n}}\right)$ respectively. Let $\mu=E(X)$ be the mean of X . The variance of X , denoted by $\operatorname{Var}(\mathrm{X})$ or σ_{x} is defined as $\mathrm{x}^{2} \operatorname{Var}(X)=\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{x}_{\mathrm{i}} \mu\right)^{2} \quad p\left(x_{\mathrm{i}}\right)$ or \quad equivalently $\sigma_{\mathrm{x}}^{2}=E(X-\mu)^{2}$. The non-negative number, $\mathrm{x} \sqrt{\operatorname{Var}(X)}=\sqrt{\sum_{\mathrm{l}=\mathrm{i}}^{\mathrm{n}}\left(\mathrm{x}_{\mathrm{i}} \mu\right)^{2} \mathrm{p}\left(\mathrm{x}_{\mathrm{i}}\right)}$ is called the standard deviation of the random variable X .
$\operatorname{Var}(X)=E\left(X^{2}\right)-[E(X)]^{2}$
- Trials of a random experiment are called Bernoulli trials, if they satisfy the following conditions:
(i) There should be a finite number of trials.
(ii) The trials should be independent.
(iii) Each trial has exactly two outcomes: success or failure.
(iv) The probability of success remains the same in each trial.

For Binomial distribution $B(n, p), P(X=x)={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{x}} \mathrm{q}^{\mathrm{n}-\mathrm{x}} \mathrm{P}^{\mathrm{x}}, \mathrm{x}=0,1, \ldots ., \mathrm{n}(\mathrm{q}=1-\mathrm{p})$

