Chapter-11

Three Dimensional Geometry

Direction cosines of a line are the cosines of the angles made by the line with the positive direct ions of the coordinate axes.

- If l, m, n are the direct ion cosines of a line, then $1^2 + m^2 + n^2 = 1$
- Direct ion cosines of a line joining two points $P(x_1,y_1,z_1)$ and $Q(x_2,y_2,z_2)$ are $\frac{x_2-x_1}{PO}$, $\frac{y_2-y_1}{PO}$, $\frac{z_2-z_2}{PO}$
- Where $PQ = \sqrt{(x_2 x_1)^2 + (y_2 y_1)^2 + (z_2 z_1)^2}$
- Direction ratios of a line are the numbers which are proportional to the direct ion cosines of a line.
- If l, m, n are the direct ion cosines and a, b, c are the direct ion ratios of a line

Then,
$$1 = \frac{a}{\sqrt{a^2 + b^2 + c^2}}$$
, $m = \frac{b}{\sqrt{a^2 + b^2 + c^2}}$, $n = \frac{c}{\sqrt{a^2 + b^2 + c^2}}$

- Skew lines are lines in space which are neither parallel nor intersecting. They lie in different planes.
- Angle between skew lines is the angle between two intersecting lines drawn from any point (preferably through the origin) parallel to each of the skew lines.
- If l_1 , m_1 , n_1 and l_2 , m_2 , n_2 are the direction cosines of two lines; and θ is the acute angle between the two lines; then,

$$\cos \theta = \left| \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}} \right|$$

• Vector equation of a line that passes through the given point whose position vector is \bar{a} and parallel to a given vector \bar{b} is $\bar{r} = \bar{a} + \lambda \bar{b}$

• Equation of a line through a point (x_1, y_1, z_1) and having direct ion cosines l, m, n is

$$\frac{x - x_1}{1} = \frac{y - y_1}{m} = \frac{z - z_1}{n}$$

- The vector equation of a line which passes through two points whose posit ion vectors are \bar{a} and \bar{b} is $\bar{r} = \bar{a} + \lambda(\bar{b} \bar{a})$
- Cartesian equation of a line that passes through two points (x_1, y_1, z_1) and (x_2, y_2, z_2) is

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}$$

- If θ is the acute angle between $\bar{r} = \bar{a}_1 + \lambda \bar{b}_1$ and $\bar{r} = \bar{a}_2 + \lambda \bar{b}_2$ then, $\cos \theta = \left| \frac{\bar{b}.\bar{b}_2}{|\bar{b}_1||\bar{b}_2|} \right|$
- If $\frac{x-x_1}{l_1} = \frac{y-y_1}{m_1} = \frac{z-z_1}{n_1}$ and $\frac{x-x_2}{l_2} = \frac{y-y_2}{m_2} = \frac{z-z_2}{n_2}$ are the equations of two lines, then the acute angle between the two lines is given by $\cos\theta = \left|l_1l_2 + m_1m_2 + n_1n_2\right|$
- Shortest distance between two skew lines is the line segment perpendicular to both the lines.

• Shortest distance between
$$\overline{r} = \overline{a}_1 + \wedge \overline{b}_1$$
 and $\overline{r} = \overline{a}_2 + \wedge \overline{b}_2$ $\left| \frac{(\overline{b}_1 \times \overline{b}_2).(\overline{a}_2 - \overline{a}_1)}{\left| \overline{b}_1 \times \overline{b}_2 \right|} \right|$

• Shortest distance between the lines: $\frac{x-x_1}{a_1} = \frac{y-y_1}{b_1} = \frac{z-z_1}{c_1} \quad \text{and} \quad \frac{x-x_2}{a_1} = \frac{y-y_2}{b_1} = \frac{z-z_2}{c_1} \text{ is}$

$$\frac{\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix}}{\sqrt{(b_1c_2 - b_2c_1)^2 + (c_1a_2 - c_2a_1)^2 + (a_1b_2 - a_2b_1)^2}}$$

Distance between parallel lines
$$\overline{r} = \overline{a_1} + \wedge \overline{b_1}$$
 and $\overline{r} = \overline{a_2} + \wedge \overline{b_2}$ $\left| \frac{(\overline{b}) \times (\overline{a_2} - \overline{a_1})}{\left| \overline{b_1} \right|} \right|$

- In the vector form, equation of a plane which is at a distance d from the origin, and n $\hat{}$ is the unit vector normal to the plane through the origin is $\hat{} = d$
- Equation of a plane which is at a distance of d from the origin and the direction cosines of the normal to the plane as l, m, n is lx + my + nz = d.
- The equation of a plane through a point whose posit ion vector is a and perpendicular to the vector \bar{N} is $(\bar{r} \bar{a})$. N=0
- Equation of a plane perpendicular to a given line with direction ratios A, B, C and passing through a given point (x_1, y_1, z_1) is
- $A(x-x_1) + B(y-y_1) + C(z-z_1) = 0$
- Equation of a plane passing through three non collinear points $(x_{l,}y_{l},z_{l})$

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0$$

$$(x_2, y_2, z_2) \text{ and } (x_3, y_3, z_3) \text{ is } \begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0$$

- Vector equation of a plane that contains three non collinear points having position vectors
- $\overline{a}, \overline{b} \text{ and } \overline{c} \text{ is } (\overline{r} \overline{a}). [(\overline{b} \overline{a}) \times (\overline{c} \overline{a})] = 0$
- Vector equation of a plane that p asses thro ugh the in the section of planes $\overline{r}.\overline{n}_1=d_1$ and $\overline{r}.\overline{n}_2=d_2$ is $\overline{r}.(\overline{n}_1+\lambda\overline{n}_2)=d_1+\lambda d_2$ where λ is any nonzero constant.
- Two lines $\overline{r} = \overline{a}_1 + \lambda \overline{b}_1$ and $\overline{r} = \overline{a}_2 + \mu \overline{b}_2$ are coplanar if $(\overline{a}_2 \overline{a}_1).(\overline{b}_1 \times \overline{b}_2) = 0$

• In the Cartesian form above lines passing through the points $A(x_1, y_1, z_1)$ and $B(x_2, y_2 z_2)$

$$= \frac{y - y_2}{b_2} = \frac{z - z_2}{C_2}$$
 are coplanar if
$$\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = 0$$

• In the vector form, if θ is the angle between the two planes, $\overline{r}.\overline{n}_1 = d_1$ and $\overline{r}.\overline{n}_2 = d_2$, then $\theta = \cos^{-1} \frac{\left|\overline{n}_1.\overline{n}_2\right|}{\left|\overline{n}_1\right|\left|\overline{n}_2\right|}$

• The angle
$$\phi$$
 between the line $\overline{r} = \overline{a} + \lambda \overline{b}$ and the plane $\overline{r} \cdot \hat{n} = d$ $\sin \phi = \left| \frac{\overline{b} \cdot \hat{n}}{|\overline{b}| |\hat{n}|} \right|$

• The angle θ between the planes $A_1x + B_1y + C_1z + D_1 = 0$ and $A_2x + B_2y + C_2z + D_2 = 0$ is

$$\cos \theta = \left| \frac{A_1 A_2 + B_1 B_2 + C_1 C_2}{\sqrt{A_1^2 + B_1^2 + C_1^2} \sqrt{A_2^2 + B_2^2 + C_2^2}} \right|$$
ven by

• The distance of a point whose position vector is \overline{a} from the plane $\overline{r} \cdot \hat{n} = d$ is $|d - \overline{a} \cdot \hat{n}|$

• The distance from a point
$$(x_1, y_1, z_1)$$
 to the plane $Ax + By + Cz + D = 0$ is $\begin{vmatrix} Ax_1 + By_1 + Cz_1 + D \\ \sqrt{A^2 + B^2 + C^2} \end{vmatrix}$