Chapter-11

Three Dimensional Geometry

Direction cosines of a line are the cosines of the angles made by the line with the positive direct ions of the coordinate axes.

- If l, m, n are the direct ion cosines of a line, then $1^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}=1$
- Direct ion cosines of a line joining two points $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$ are $\frac{x_{2}-x_{1}}{P Q}, \frac{y_{2}-y_{1}}{P Q}, \frac{z_{2}-z_{2}}{P Q}$
- Where $\mathrm{PQ}=\sqrt{\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}+\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right)^{2}}$
- Direction ratios of a line are the numbers which are proportional to the direct ion cosines of a line.
- If l, m, n are the direct ion cosines and a, b, c are the direct ion ratios of a line

Then, $\quad \mathrm{l}=\frac{\mathrm{a}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}},} \mathrm{~m}=\frac{\mathrm{b}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}},} \mathrm{n}=\frac{\mathrm{c}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}}$

- Skew lines are lines in space which are neither parallel nor intersecting. They lie in different planes.
- Angle between skew lines is the angle between two intersecting lines drawn from any point (preferably through the origin) parallel to each of the skew lines.
- If l_{1}, m_{1}, n_{1} and l_{2}, m_{2}, n_{2} are the direction cosines of two lines; and θ is the acute angle between the two lines; then,
$\cos \theta=\left|\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}}+b_{1}^{2}+c_{1}^{2} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}\right|$
- Vector equation of a line that passes through the given point whose position vector is $\overline{\mathrm{a}}$ and parallel to a given vector $\overline{\mathrm{b}}$ is $\overline{\mathrm{r}}=\overline{\mathrm{a}}+\lambda \overline{\mathrm{b}}$
- Equation of a line through a point $\left(\mathrm{x}_{1,} \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and having direct ion cosines l, m, n is
$\frac{\mathrm{x}-\mathrm{x}_{1}}{\mathrm{l}}=\frac{\mathrm{y}-\mathrm{y}_{1}}{\mathrm{~m}}=\frac{\mathrm{z}-\mathrm{z}_{1}}{\mathrm{n}}$
- The vector equation of a line which passes through two points whose posit ion vectors are \bar{a} and \bar{b} is $\bar{r}=\bar{a}+\lambda(\bar{b}-\bar{a})$
- Cartesian equation of a line that passes through two points $\left(\mathrm{x}_{1,}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ is
$\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}$
- If θ is the acute angle between $\overline{\mathrm{r}}=\overline{\mathrm{a}}_{1}+\lambda \overline{\mathrm{b}}_{1}$ and $\overline{\mathrm{r}}=\overline{\mathrm{a}}_{2}+\lambda \overline{\mathrm{b}}_{2}$ then, $\cos \theta=\left|\frac{\overline{\mathrm{b}} . \bar{b}_{2}}{\left|\overline{\mathrm{~b}}_{1} \| \overline{\mathrm{b}}_{2}\right|}\right|$
- If $\frac{x-x_{1}}{l_{1}}=\frac{y-y_{1}}{m_{1}}=\frac{z-z_{1}}{n_{1}}$ and $\frac{x-x_{2}}{l_{2}}=\frac{y-y_{2}}{m_{2}}=\frac{z-z_{2}}{n_{2}}$ ar

$$
\cos \theta=\left|\mathrm{l}_{1} 1_{2}+\mathrm{m}_{1} \mathrm{~m}_{2}+\mathrm{n}_{1} \mathrm{n}_{2}\right|
$$

acute angle between the two lines is given by

- Shortest distance between two skew lines is the line segment perpendicular to both the lines.
- Shortest distance between $\overline{\mathrm{r}}=\overline{\mathrm{a}}_{1}+\wedge \overline{\mathrm{b}}_{1}$ and $\overline{\mathrm{r}}=\overline{\mathrm{a}}_{2}+\wedge \overline{\mathrm{b}}_{2}\left|\frac{\left(\overline{\mathrm{~b}}_{1} \times \overline{\mathrm{b}}_{2}\right) \cdot\left(\overline{\mathrm{a}}_{2}-\overline{\mathrm{a}}_{1}\right)}{\left|\overline{\mathrm{b}}_{1} \times \overline{\mathrm{b}}_{2}\right|}\right|$
- Shortest distance between the lines: $\frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}}$ and $\frac{x-x_{2}}{a_{1}}=\frac{y-y_{2}}{b_{1}}=\frac{z-z_{2}}{c_{1}}$ is

$$
\frac{\left|\begin{array}{ccc}
x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2}
\end{array}\right|}{\sqrt{\left(b_{1} c_{2}-b_{2} c_{1}\right)^{2}+\left(c_{1} a_{2}-c_{2} a_{1}\right)^{2}+\left(a_{1} b_{2}-a_{2} b_{1}\right)^{2}}}
$$

- In the vector form, equation of a plane which is at a distance d from the origin, and n^{\wedge} is the unit vector normal to the plane through the origin is ${ }^{-}=\mathrm{d}$
- Equation of a plane which is at a distance of d from the origin and the direction cosines of the normal to the plane as $\mathrm{l}, \mathrm{m}, \mathrm{n}$ is $l x+m y+n z=d$.
- The equation of a plane through a point whose posit ion vector is a and perpendicular to the vector \bar{N} is $(\bar{r}-\bar{a})$. $\mathrm{N}=0$
- Equation of a plane perpendicular to a given line with direction ratios $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and passing through a given point $\left(x_{1}, y_{1}, z_{1}\right)$ is
- $\mathrm{A}\left(\mathrm{x}-\mathrm{x}_{1}\right)+\mathrm{B}\left(\mathrm{y}-\mathrm{y}_{1}\right)+\mathrm{C}\left(\mathrm{z}-\mathrm{z}_{1}\right)=0$
- Equation of a plane passing through three non collinear points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$
$\left(x_{2,} y_{2}, z_{2}\right)$ and $\left(x_{3,} y_{3}, z_{3}\right)$ is $\left|\begin{array}{ccc}x-x_{1} & y-y_{1} & z-z_{1} \\ x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\ x_{3}-x_{1} & y_{3}-y_{1} & z_{3}-z_{1}\end{array}\right|=0$
- Vector equation of a plane that contains three non collinear points having position vectors
- \bar{a}, \bar{b} and \bar{c} is $(\bar{r}-\bar{a}) \cdot[(\bar{b}-\bar{a}) \times(\bar{c}-\bar{a})]=0$
- Equation of a plane that cuts the coordinates axes at $(a, 0,0),(0, b, 0)$ and $(0,0, c)$ is $\frac{\mathrm{x}}{\mathrm{a}}+\frac{\mathrm{y}}{\mathrm{b}}+\mathrm{z}_{\mathrm{c}}^{\mathrm{z}}=1$
- Vector equation of a plane that p asses thro ugh the in the section of planes $\overline{\mathrm{r}} . \bar{n}_{1}=\mathrm{d}_{1}$ and $\overline{\mathrm{r}} . \overline{\mathrm{n}}_{2}=\mathrm{d}_{2}$ is $\overline{\mathrm{r}} .\left(\overline{\mathrm{n}}_{1}+\lambda \overline{\mathrm{n}}_{2}\right)=\mathrm{d}_{1}+\lambda \mathrm{d}_{2}$ where λ is any nonzero constant.
- Cartesian equation of a plane that passes that passes through the intersection of two given planes $A_{1} x+B_{1} y+C_{1} z+D_{1}=0$ and $A_{2} x+B_{2} y+C_{2} z+D_{2}=0$ is $\left(\mathrm{A}_{1} \mathrm{x}+\mathrm{B}_{1} \mathrm{y}+\mathrm{C}_{1} \mathrm{z}+\mathrm{D}_{1}\right)+\lambda\left(\mathrm{A}_{2} \mathrm{x}+\mathrm{B}_{2} \mathrm{y}+\mathrm{C}_{2} \mathrm{z}+\mathrm{D}_{2}=0\right.$
- Two lines $\overline{\mathrm{r}}=\overline{\mathrm{a}}_{1}+\lambda \overline{\mathrm{b}}_{1}$ and $\overline{\mathrm{r}}=\overline{\mathrm{a}}_{2}+\mu \overline{\mathrm{b}}_{2}$ are coplanar if $\left(\overline{\mathrm{a}}_{2}-\overline{\mathrm{a}}_{1}\right) \cdot\left(\overline{\mathrm{b}}_{1} \times-\overline{\mathrm{b}}_{2}\right)=0$
- In the Cartesian form above lines passing through the points $A\left(x_{1}, y_{1}, z_{1}\right)$ and $B\left(x_{2}, y_{2} z_{2}\right)$
$=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{C_{2}}$ are coplanar if $\left|\begin{array}{ccc}x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\ a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2}\end{array}\right|=0$
- In the vector form, if θ is the angle between the two planes, $\overline{\mathrm{r}} . \bar{n}_{1}=d_{1}$ and $\overline{\mathrm{r}} \cdot \bar{n}_{2}=d_{2}$, then

$$
\theta=\cos ^{-1} \frac{\left|\bar{n}_{1} \cdot \bar{n}_{2}\right|}{\left|\overline{\mathrm{n}}_{1}\right|\left|\overline{\mathrm{n}}_{2}\right|}
$$

- The angle ϕ between the line $\overline{\mathrm{r}}=\overline{\mathrm{a}}+\lambda \overline{\mathrm{b}}$ and the plane $\overline{\mathrm{r}} \cdot \hat{n}=\mathrm{d} \quad \sin \phi=\left|\frac{\bar{b} \cdot \hat{n}}{|\overline{\mathrm{~b}}||\hat{\mathrm{n}}|}\right|$
- The angle θ between the planes $A_{1} x+B_{1} y+C_{1} z+D_{1}=0$ and $A_{2} x+B_{2} y+C_{2} z+D_{2}=0$ is given by $\cos \theta=\left|\frac{\mathrm{A}_{1} \mathrm{~A}_{2}++\mathrm{B}_{1} \mathrm{~B}_{2}+\mathrm{C}_{1} \mathrm{C}_{2}}{\sqrt{\mathrm{~A}_{1}^{2}+\mathrm{B}_{1}^{2}+\mathrm{C}_{1}^{2}} \sqrt{\mathrm{~A}_{2}^{2}+\mathrm{B}_{2}^{2}+\mathrm{C}_{2}^{2}}}\right|$
- The distance of a point whose position vector is \bar{a} from the plane $\overline{\mathrm{r}} . \hat{\mathrm{n}}=\mathrm{d}$ is $|\mathrm{d}-\overline{\mathrm{a}} . \hat{n}|$
- The distance from a point $\left(x_{1}, y_{1}, z_{1}\right)$ to the plane $A x+B y+C z+D=0$ is $\left|\begin{array}{c}A x_{1}+B y_{1}+C z_{1}+D \\ \sqrt{A^{2}+B^{2}+C^{2}}\end{array}\right|$

