Chapter-10

Vector Algebra

- Position vector of a point $P(x, y)$ is given as $=\bar{r})=x \hat{i}+y \hat{j}+z \hat{k}$ and its magnitude by $\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}$
- The scalar components of a vector are its direction ratios, and represent its projections along the respective axes.
- The magnitude (r), direction ratios (a, b, c) and direction cosines (l, m, n) of any vector are related as: $\mathrm{l}=\underset{\mathrm{r}}{\mathrm{a}}, \mathrm{m}=\underset{\mathrm{r}}{\mathrm{b}}, \mathrm{n}=\underset{\mathrm{r}}{\mathrm{c}}$
- The vector sum of the three sides of a triangle taken in order is $\overline{\mathrm{O}}$
- The vector sum of two conidial vectors is given by the diagonal of the parallelogram whose adjacent sides are the given vectors.
- The multiplication of a given vector by a scalar λ, changes the magnitude of the vector by the multiple $|\lambda|$, and keeps the direction same (or makes it opposite) according as the value of λ is positive (or negative).
- For a given vector \bar{a}, the vector $\hat{a}=\frac{\bar{a}}{|\bar{a}|}$ gives the unit vector in the direction of \bar{a}
- The position vector of a point R dividing a line segment joining the points P and Q whose position vectors are \bar{a} and \bar{b} respectively, in the ratio $m: n$
(i) internally, is given by ${ }^{-}+$

$$
\mathrm{m}+\mathrm{n}
$$

(ii) externally, is given by

$$
\begin{aligned}
& -_{-}^{-} \\
& m-n
\end{aligned}
$$

- The scalar product of two given vectors \bar{a} and \bar{b} having angle θ between them is defined as ${ }^{-}=|\bar{a}||\bar{b}| \cos \theta$

Also, when $\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}$ is given, the angle θ^{\prime} between the vectors \bar{a} and \bar{b} may be determined by
$\cos \theta=\overline{|\overline{\mathrm{a}}||\overline{\mathrm{b}}|}$

- If θ is the angle between two vector \bar{a} and \bar{b}, then their cross product is given as $\overline{\mathrm{a}} \times \overline{\mathrm{b}}=|\overline{\mathrm{a}} \| \overline{\mathrm{b}}| \sin \theta \hat{\mathrm{n}}$ where n is a unit vector perpendicular to the plane containing \bar{a} and \bar{b}. Such that $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \hat{\mathrm{n}}$ form right handed system of coordinate axes.
- If we have two vectors \bar{a} and \bar{b} given in component form as $\bar{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ and $\bar{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$ and λ any scalar, then, $a+b=\left(a_{1}+b_{1}\right) \hat{i}+\left(a_{2}+b_{2}\right) \hat{j}+\left(a_{3}+b_{3}\right) \hat{k}$ $\lambda \bar{a}=\left(\lambda a_{1}\right) \hat{i}+\left(\lambda a_{2}\right) \hat{j}+\left(\lambda a_{3}\right) \hat{k} ;$
$\bar{a} \cdot \bar{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$
and $\bar{a} \times \bar{b}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2}\end{array}\right|$

