Chapter-6

Application of Derivatives

- If a quantity y varies with another quantity x, satisfying some rule () yf $x=$, then $\frac{d x}{d y}$ (or $f^{\prime}(x)$ represents the rate of change of y with respect to x and $\left.\frac{d y}{d x}\right]_{x=x_{0}}\left(o r f^{\prime}\left(x_{0}\right)\right.$ represents the rate of change of y with respect to x at $0 \mathrm{x} x=$.
- If two variables x and y are varying with respect to another variable t, i.e., if $x=f(\mathrm{t})$ and $y=g(\mathrm{t})$ then by Chain Rule
- $\frac{d y}{d x}=\frac{d y / d t}{d x / d t}$, if $\frac{d x}{d t} \neq 0$
(a) A function f is said to be increasing on an interval (a, b) if

$$
x_{1}<x_{2} \text { in }(a, b) \Rightarrow f\left(x_{1}\right) \leq f\left(x_{2}\right) \text { for all } x_{1}, x_{2} \in(a, b)
$$

Alternatively, if $f^{\prime}(x) \geq 0$ for each x in (a, b)
(b) decreasing on (a, b) if

$$
x_{1}<x_{2} \text { in }(a, b) \Rightarrow f\left(x_{1}\right) \geq f\left(x_{2}\right) \text { for all } x_{1}, x_{2} \in(a, b)
$$

Alternatively, if $\quad '(x) \leq 0$ for each x in (a, b)

- The equation of the tangent at $\left(x_{0}, y_{0}\right)$ to the curve $y=f(x)$ is given by
- $\left.y-y_{o}=\frac{d y}{d x}\right]_{\left(x_{0, y_{0}}\right)}\left(x-x_{o}\right)$
- If ${ }_{\mathrm{dx}}$ does not exist at the point $\left(x_{0}, y_{0}\right)$, then the tangent at this point is parallel to the y axis and its equation is $\quad=x_{0}$.
- If tangent to a curve $y=f(x)$ at $x=x_{0}$ is parallel to x -axis, then $\left.\frac{\mathrm{dy}}{\mathrm{dx}}\right]_{\mathrm{x}=\mathrm{x}_{0}}$
- Equation of the normal to the curve $\mathrm{y}=\mathrm{f}(\mathrm{x})$ at a point $\left(x_{0}, y_{0}\right)$ is given by

$$
\left.y-y_{o}=\frac{-1}{\frac{d y}{d x}}\right]_{\left(x_{0, y_{0}}\right)}\left(x-x_{0}\right)
$$

- If $\frac{d y}{\mathrm{dx}}$ at the point $\left(x_{\mathrm{o}}, y_{\mathrm{o}}\right)$ is zero, then equation of the normal is $x=x^{\mathrm{o}}$.
- If at the point $\left(x_{0}, y_{0}\right)$ does not exist, then the normal is parallel to x -axis and its equation is $y=y_{0}$.
- Let $\mathrm{y}=\mathrm{f}(\mathrm{x}), \Delta \mathrm{x}$ be a small increment in x and $\Delta \mathrm{y}$ be the increment in y corresponding to the increment in x , i.e., $\Delta \mathrm{y}=\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})-\mathrm{f}(\mathrm{x})$. Then dy given by $d y f^{\prime}(x) d x$ or $d y=\left(\frac{\mathrm{dx}}{\mathrm{dx}}\right) \Delta \mathrm{x}$ is a good approximation of Δy when $d x x=\Delta$ is relatively small and we denote it by $d y \approx \Delta y$.
- A point c in the domain of a function f at which either $f^{\prime}(c)=0$ or f is not differentiable is called a critical point of f.
- First Derivative Test Let f be a function defined on an open interval I. Let f be continuous at a critical point c in I. Then,
- If $f^{\prime}(x)$ changes sign from positive to negative as x increases through c, i.e., if $f^{\prime}(x)>0$ at every point sufficiently close to and to the left of c, and $f^{\prime}(x)<0$ at every point sufficiently close to and to the right of c , then c is a point of local maxima.
- If $\mathrm{f}^{\prime}(\mathrm{x})$ changes sign from negative to positive as x increases through c , i.e., if $\mathrm{f}^{\prime}(\mathrm{x})<0$ at every point sufficiently close to and to the left of c, and $f^{\prime}(x)>0$ at every point sufficiently close to and to the right of c, then c is a point of local minima.
- If $f^{\prime}(x)$ does not change sign as x increases through c, then c is neither a point of local maxima nor a point of local minima. In fact, such a point is called point of inflexion.
- Second Derivative Test Let f be a function defined on an interval I and $c \in I$. Let f be twice differentiable at c . Then, $\mathrm{x}=\mathrm{c}$ is a point of local maxima if $\mathrm{f}^{\prime}(\mathrm{c})=0$ and $\mathrm{f}^{\prime \prime}(\mathrm{c})<0$ The values $f(c)$ is local maximum value of f.
(i) $\mathrm{x}=\mathrm{c}$ is a point of local minima if $\mathrm{f}^{\prime}(\mathrm{c})=0$ and $\mathrm{f}^{\prime \prime}(\mathrm{c})>0$

In this case, $\mathrm{f}(\mathrm{c})$ is local minimum value of f .
(ii) The test fails if $\mathrm{f}^{\prime}(\mathrm{c})=0$ and $\mathrm{f}^{\prime \prime}(\mathrm{c})=0$.

In this case, we go back to the first derivative test and find whether c is a point of maxima, minima or a point of inflexion.

- Working rule for finding absolute maxima and/or absolute minima

Step 1: Find all critical points of f in the interval, i.e., find points x where either $f^{\prime}(x)=0$ or f is not differentiable.

Step 2: Take the end points of the interval.
Step 3: At all these points (listed in Step 1 and 2), calculate the values of f.
Step 4: Identify the maximum and minimum values of f out of the values calculated in Step

- This maximum value will be the absolute maximum value of f and the minimum value will be the absolute minimum value of f.

