Chapter-5

Continuity and Differentiability

- A real valued function is continuous at a point in its domain if the limit of the function at that point equals the value of the function at that point. A function is continuous if it is continuous on the whole of its domain.
- Sum, difference, product and quotient of continuous functions are continuous. i.e., if f and g are continuous functions, then
$(f \pm g)(x)=f(x) \pm g(x)$ is continuous.
$(f . g)(x)=f(x) \cdot g(x)$ is continuous.
$\binom{f}{g}(x)=\underset{g(x)}{f(x)}($ wherever $g(x) \neq 0)$ is continuous.
- Every differentiable function is continuous, but the converse is not true.
- Chain rule is rule to differentiate composites of functions. If $f=v o u, t=u(x)$ and if both and if both ${ }_{\mathrm{dx}}^{\mathrm{dt}}$ and $\underset{\mathrm{dt}}{\mathrm{dv}}$ exist then $\underset{\mathrm{dx}}{\mathrm{df}}=\frac{\mathrm{dv}}{\mathrm{dt}}=\frac{\mathrm{dt}}{\mathrm{dx}}$
- Following are some of the standard derivatives (in appropriate domains):

$$
\begin{aligned}
& \frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}} \\
& \frac{d}{d x}\left(\cos ^{-1} x\right)=-\frac{1}{\sqrt{1-x^{2}}} \\
& \frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}} \\
& \frac{d}{d x}\left(\cos ^{-1} x\right)=\frac{-1}{1+x^{2}} \\
& \frac{d}{d x}\left(\sec ^{-1} x\right)=\frac{1}{x \sqrt{1-x^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d x}\left(\operatorname{cosec}^{-1} x\right)=\frac{-1}{x \sqrt{1-x^{2}}} \\
& \frac{d}{d x}\left(e^{x}\right)=e^{x} \\
& \frac{d}{d x}(\log x)=1
\end{aligned}
$$

- Logarithmic differentiation is a powerful technique to differentiate functions of the form $f(x)=[u(x)]^{\mathrm{v}(\mathrm{x})}$ Here both $\mathrm{f}(\mathrm{x})$ and $\mathrm{u}(\mathrm{x})$ need to be positive for this technique to make sense.
- Rolle's Theorem: If $f:[a, b] \rightarrow R$ is continuous on $[a, b]$ and differentiable on (a, b) such that f $(a)=f(b)$, then there exists some c in (a, b) such that $f^{\prime}(c)=0$.
- Mean Value Theorem: If $f:[a, b] \rightarrow R$ is continuous on $[a, b]$ and differentiable on (a, b). Then there exists some c in (a, b) such that $f^{\prime}(c)=\begin{gathered}f(b)-f(a) \\ b-a\end{gathered}$

