Chapter-4

Determinant

- Determinant of a matrix $A=\left[a_{11}\right]_{1 \times 1}$ is given by $\left|a_{11}\right|=a_{11}$
- Determinant of a matrix $A \begin{array}{ll}a_{11} & 12 \\ a_{21} & a_{22}\end{array}$ is given by

$$
|A|=\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|=a_{11} a_{22}-a_{12} \quad a_{21}
$$

$$
\begin{array}{lll}
\mathrm{a}_{1} & \mathrm{~b}_{1} & \mathrm{c}_{1}
\end{array}
$$

- Determinant of a matrix $A a_{2} \quad b_{2} \quad c_{2}$ is given by (expanding along $\left(R_{1}\right)$

$$
\begin{array}{lll}
\mathrm{a}_{3} & \mathrm{~b}_{3} & \mathrm{c}_{3}
\end{array}
$$

$$
|A|=\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|=a_{1}\left|\begin{array}{ll}
b_{2} & c_{2} \\
b_{3} & c_{3}
\end{array}\right|-b_{1}\left|\begin{array}{cc}
a_{2} & c_{2} \\
a_{3} & c_{3}
\end{array}\right|+c_{1}\left|\begin{array}{cc}
a_{2} & b_{2} \\
a_{3} & b_{3}
\end{array}\right|
$$

- For any square matrix A, the $|A|$ satisfy following properties.
- $\quad\left|A^{\prime}\right|=|A|$, where $A^{\prime}=$ transpose of A.
- If we interchange any two rows (or columns), then sign of determinant changes.
- If any two rows or any two columns are identical or proportional, then value of determinant is zero.
- If we multiply each element of a row or a column of a determinant by constant k, then value of determinant is multiplied by k .
- Multiplying a determinant by k means multiply elements of only one row (or one column) by k.
- If $A=\left[a_{\mathrm{ij}}\right]_{3 \times 3}$, then $|k . A|=k^{3}|\mathrm{~A}|$
- If elements of a row or a column in a determinant can be expressed as sum of two or more elements, then the given determinant can be expressed as sum of two or more determinants.
- If to each element of a row or a column of a determinant the equimultiples of corresponding elements of other rows or columns are added, then value of determinant remains same.
- Area of a triangle with vertices $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ is given by

$$
\Delta=\frac{1}{2}\left|\begin{array}{lll}
\mathrm{x}_{1} & \mathrm{y}_{1} & 1 \\
\mathrm{x}_{2} & \mathrm{y}_{2} & 1 \\
\mathrm{x}_{3} & \mathrm{y}_{3} & 1
\end{array}\right|
$$

- Minor of an element aij of the determinant of matrix A is the determinant obtained by deleting $\mathrm{i}^{\text {th }}$ row and $\mathrm{j}^{\text {th }}$ column and denoted by M_{ij}
- Cofactor of aij of given by $\mathrm{Aij}=(-1) \mathrm{i}+\mathrm{j}$ Mij
- Value of determinant of a matrix A is obtained by sum of product of elements of a row (or a column) with corresponding cofactors. For example, $|A|=a_{11} A_{11}+a_{12} A_{12}+a_{13} A_{13}$.
- If elements of one row (or column) are multiplied with cofactors of elements of any other row (or column), then their sum is zero. For example, $1121+a_{12} A_{22}+a_{13} A_{23}=0$
- $A(\operatorname{adj} A)=(\operatorname{adj} A) A=|A| I$, where A is square matrix of order n .
- A square matrix A is said to be singular or non-singular according as $\mid \|=0$ or $|A| \neq 0$.
- If $A B=B A=I$, where B is square matrix, then B is called inverse of A. Also $A^{-1}=B$ or $B^{-1}=A$ and hence $\left(A^{-1}\right)^{-1}=A$.
- A square matrix A has inverse if and only if A is non-singular.
- $\mathrm{A}^{-1}=\frac{1}{|\mathrm{~A}|}(\operatorname{adj} \mathrm{A})$
- If $\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1} \mathrm{z}=\mathrm{d}_{1}$
- $\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2} \mathrm{z}=\mathrm{d}_{2}$
- $\mathrm{a}_{3} \mathrm{x}+\mathrm{b}_{3} \mathrm{y}+\mathrm{c}_{3} \mathrm{z}=\mathrm{d}_{3}$
- then these equations can be written as $\mathrm{A} X=\mathrm{B}$, where

$$
A=\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|=X\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \text { and } B=\left[\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right]
$$

- Unique solution of equation $\mathrm{AX}=\mathrm{B}$ is given by $X=A^{-1} B$, where $|A| 0 \neq 0$.
- A system of equation is consistent or inconsistent according as its solution exists or not.
- For a square matrix A in matrix equation $\mathrm{AX}=\mathrm{B}$
- $|A| \neq 0$, there exists unique solution
- $|A|=0$ and $(\operatorname{adj} A) B \neq 0$, then there exists no solution
- $|A|=0$ and $(\operatorname{adj} A) B=0$, then system may or may not be consistent.

