Chapter-3

Matrices

- A matrix is an ordered rectangular array of numbers or functions.
- A matrix having m rows and n columns is called a matrix of order $m \times n$.
- $\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{m} \times 1}$ is a column matrix.
- $\left[\mathrm{a}_{\mathrm{ij}}\right]_{1 \times \mathrm{n}}$ is a row matrix.
- An $m \times n$ matrix is a square matrix if $m=n$.
- $\mathrm{A}=\mathrm{A}=\left[a_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{n}}$ is a diagonal matrix if $\mathrm{a}_{\mathrm{ij}}=0$, when $\mathrm{i} \neq \mathrm{j}$
- $A=\left[a_{\mathrm{ji}}\right]_{\mathrm{n} \times \mathrm{n}}$ is a scalar matrix if $\mathrm{a}_{\mathrm{ij}}=0$ when $\mathrm{i} \neq \mathrm{j}, \mathrm{a}_{\mathrm{ij}}=\mathrm{k}$ (k is some constant), when $I=j$.
- $A=\left[a_{\mathrm{ij}}\right]_{\mathrm{n} \times \mathrm{n}}$ is an identity matrix, if $\quad \mathrm{ij}=1$, when $i=j, a_{\mathrm{ij}}=0$, when $i \neq j$.
- A zero matrix has all its elements as zero.
- $A=\left[a_{\mathrm{ij}}\right]=\left[b_{\mathrm{ij}}\right]=B$ if (i) A and B are of same order, (ii) for all possible values of i and j.
$k A=k\left[a_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{n}}=\left[k\left(a_{\mathrm{ij}}\right)\right]_{\mathrm{m} \times \mathrm{n}}$
- $\quad-\mathrm{A}=(-1) \mathrm{A}$
- $\quad \mathrm{A}-\mathrm{B}=\mathrm{A}+(-1) \mathrm{B}$
- $\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}$
- $\quad(A+B)+C=A+(B+C)$, where A, B and C are of same order.
- $k(A+B)=k A+k B$, where A and B are of same order, k is constant.
- $\quad(\mathrm{k}+\mathrm{l}) \mathrm{A}=\mathrm{kA}+\mathrm{lA}$, where k and l are constant.
- If $A=\left[a_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{n}}$ and $B=\left[b_{\mathrm{jk}}\right]_{\mathrm{n} \times \mathrm{p}}$, then $A B=C=\left[c_{\mathrm{ik}}\right]_{\mathrm{m} \times \mathrm{p}}$, where $\mathrm{C}_{\mathrm{tl}}=\sum_{\mathrm{j}=\mathrm{i}}^{\mathrm{n}} \mathrm{a}_{\mathrm{ij}} \mathrm{b}_{\mathrm{jk}}$
(i) $\mathrm{A}(\mathrm{BC})=(\mathrm{AB}) \mathrm{C}$,
(ii) $\mathrm{A}(\mathrm{B}+\mathrm{C})=\mathrm{AB}+\mathrm{AC}$,
(iii) $(\mathrm{A}+\mathrm{B}) \mathrm{C}=\mathrm{AC}+\mathrm{BC}$

If $A=\left[a_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{n}}$, then A^{\prime} or $A^{\mathrm{T}}=\left[a_{\mathrm{ji}}\right]_{\mathrm{n} \times \mathrm{m}}$
(i) $\left(\mathrm{A}^{\prime}\right)^{\prime}=\mathrm{A}$,
(ii) $(\mathrm{kA})^{\prime}=k A^{\prime}$,

- (iii) $(A+B)^{\prime}=A^{\prime}+B^{\prime}$,
- (iv) $(A B)^{\prime}=B^{\prime} A^{\prime}$
- A is a symmetric matrix if $\mathrm{A}^{\prime}=\mathrm{A}$.
- A is a skew symmetric matrix if $\mathrm{A}^{\prime}=-\mathrm{A}$.
- Any square matrix can be represented as the sum of a symmetric and a skew symmetric matrix.
- Elementary operations of a matrix are as follows:
(i) $\mathrm{R}_{1} \leftrightarrow \mathrm{R}_{\mathrm{j}}$ or $\mathrm{C}_{1} \leftrightarrow \mathrm{C}_{\mathrm{j}}$
(i) $\mathrm{R}_{1} \rightarrow \mathrm{kR}_{\mathrm{i}}$ or $\mathrm{C}_{1} \leftrightarrow \mathrm{kC}_{1}$
(i) $\mathrm{R}_{1} \leftrightarrow \mathrm{R}_{\mathrm{j}}+\mathrm{kR} \mathrm{R}_{\mathrm{j}}$ or $\mathrm{C}_{1}+\mathrm{kC} \mathrm{C}_{\mathrm{j}}$
- If A and B are two square matrices such that $A B=B A=I$, then B is the inverse matrix of A and is denoted by A^{-1} and A is the inverse of B.
- Inverse of a square matrix, if it exists, is unique.

